接着说共模电感其他一些东西。共模电感因为都是对GND的,所以在两根线之间的电流方向是相反的,同样,那些干扰信号产生的方向也是相反的。根据楞 次定律说的,有电流流过就有相应磁场产生,由我们学过的右手法则可以知道一根线的磁场是向里的,而另一个电流磁场也是向里的(因为电流方向相反),所以在 共模电感之间会产生一个磁涡,这个磁涡的出现增大了线路上面的感抗,有效的抑制了EMI的产生。
差模干扰:两根线之间的干扰叫差模干扰。首先要明确一点是差模干扰说的是干扰信号,而不是正常信号(因为我在这出过误解,所以提一下),因为差模干 扰是两根线之间产生的干扰,所以,产生的干扰方向是同一方向,这样由楞次定律可以知道这两根线产生的磁场方向是相反的。这样就可以相互抵消来减少差模间的 EMI。"差模电感的特点是应用在大电流的场合。由于一个铁心上绕的一个线圈,当流进线圈的电源增大时,线圈中的铁心会饱和"这是从百度上查到的。朱工 说,一般我们差模电感后面会加上一个Y电容来构成典型电路。
另外:我们在设计电路的时候,在进入IC电源的时候一般都会加入一个磁珠然后再进入IC引脚,但是好多情况我看到好多人使用的是电感,后来查了一 下,有这样的介绍:磁珠专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。磁珠是用来吸收超高频信号,象一些RF电 路,PLL,振荡电路,含超高频存储器电路(DDRSDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路, 中低频的滤波电路等,其应用频率范围很少超过50MHZ。 磁珠有很高的电阻率和磁导率,等效于电阻和电感串联,但电阻值和电感值都随频率变化。还要说明的一点是:磁珠所收集的能量终以热能的形式散放,而电感只 是减缓了大电流的速度,能量不会散失。